Programming logic: When code does what you say, not what you mean

University of Bologna - 10/07/2025 Lorenzo Dall'Olio, Ph.D., Health Researcher for IRCCS ISNB Bellaria

What are we going to learn?

What are we going to learn?

Nothing

What are we going to learn?

To properly craft the algorithm we wanted to

Let's learn it by **brute force**.

Let's learn it by **brute force...** on yourselves!

The Algorithm Challenge - Rules

- You will write **10**.**txt files**, each file will provide pseudo-code (Instructions in a bullet format) to achieve a different task. You are allowed to use <u>*if-else*</u> and <u>*loops*</u> syntaxes if needed.

- deliver the 10 .txt files in a folder with the team name, and each file named after the task its addressing.

- 4 teams, semifinals and finals format, each challenge will vert on **5 tasks**.

- During semifinals 2 selected by each team, and 1 by me. During the final, the remaining 5 tasks will be evaluated (the 5 you have not performed during semifinals).

- Possible further challenges might be added as tie-breakers by me, the only supreme judge/divinity of this lesson. [least instruction challenges]

- No violence, no self-harm, human compilers will still perform basic life continuation activites without explicit instructions. <u>Please, no LLMs usage</u> (if you want to learn).

The Algorithm Challenge - Tasks

- 1) Take your phone out of your pocket
- 2) lift a chair (for 5 seconds)
- 3) Hug someone
- 4) Perform 1 Burpee (1 push up, then 1 jump + overhead clap)
- 5) Dance (for 5 seconds)
- 6) Physically exit the room (from a valid door!)
- 7) From seated position stand up and sit down again
- 8) Shuffle a deck of cards
- 9) Order 3 numbered cards by increasing value
- 10) Find the red covered card from within the deck of cards

- Unambigous

Mars Climate Orbiter, 1998

- Unambigous

Mars Climate Orbiter, 1998

(Newton or Pound-force?)

- Unambigous

Mars Climate Orbiter, 1998

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

- Unambigous

Mars Climate Orbiter, 1998

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

- Possible

- Unambigous

Mars Climate Orbiter, 1998

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

- Possible

The USS Yorktown, 1997

- Unambigous Mars Climate

Orbiter, 1998

- Possible

The USS Yorktown, 1997

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

(divide hp by 0)

- Unambigous

Mars Climate Orbiter, 1998

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

- Possible

The USS Yorktown, 1997

(divide hp \rightarrow stalled for hours by 0) \rightarrow in open sea

- Unambigous Mars Climate

Orbiter, 1998

- Possible

The USS Yorktown, 1997

- Correct

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

(divide hp \rightarrow stalled for hours by 0) \rightarrow in open sea

- Unambigous Mars Climate

Orbiter, 1998

- Possible

The USS Yorktown, 1997

- Correct

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

(divide hp \rightarrow stalled for hours by 0) \rightarrow in open sea

"Prime numbers are those not divisible

by any other number" - You, in 5th grade.

- Unambigous Mars Climate

Orbiter, 1998

- Possible

The USS Yorktown, 1997

- Correct

(Newton or \rightarrow disintegrated by Pound-force?) \rightarrow mars atmosphere

(divide hp \rightarrow stalled for hours by 0) \rightarrow in open sea

"Prime numbers are those not divisible by any other number" - You, in 5th grade.

→ There are no→ prime numbers

...Atomize...

...Atomize...

...and check for correctness, disambiguate, verify the possibility to yadda yadda yadda...

...Atomize...

...and check for correctness, disambiguate, verify the possibility to yadda yadda yadda...

Atomize!!!

In general:

- Minimize all possible assumptions.

"Draw a quadrilateral figure" \rightarrow it does not state it to be a square, a rectangle, a parallelorgam, a trapezoid, etc... \rightarrow

- Maximize possible starting scenarios, and connect them to a common case in a funnel fashion.

"Horizontally flip a sequence of numbers" \rightarrow how is this sequence stored? Can it have length of 1 element?

- Decompose as much as possible.

The more, the better, always! Then you can use the prebuilt functions optimized by experts to jump multiple steps all at once.

Let's make a useful one

Now make a pseudo-code algorithm to perform one of the following tasks:

- Find all prime numbers between 1 and N [Very Easy]
- Swap 2 numerical variables values without using a third variable or a pre-built function **[medium]**

- Solve the Hanoi tower with N starting disks **[Very Hard]** check <u>https://www.mathsisfun.com/games/towerofhanoi.html</u> for visual help

Let's make a useful one – solution 1

Find all prime numbers between 1 and N **[Very Easy]**: {Sieve of Eratosthenes}

- Store all numbers from 2 to N in increasing order i=2, Repeat until i > $N^{0.5}$
- delete all multiples of i from the list
- assign the next smallest value to i

Let's make a useful one – solution 2

Swap 2 numerical variables value without using a third variable or a prebuilt function **[medium]**

- A = A+B (store the sum in the first variable)
- B = A-B (store the sum minus the second variable in the second v.)
- A = A-B (store the sum minus the second variable in the first var.)

Let's make a useful one – solution 3

Solve the Hanoi tower with N starting disks [Very Hard]:

- Assign each disk a number, 1 for the smallest, N to the largest i=0, Repeat 2^{N} -1 times (until all disks are in tower 3)
- A = bitwise XOR between i and i+1 binary representations
- P = the largest position (power of 2) of A having a 1 instead of a 0 If P%2 is equal to N%2 (P and N have the same parity)
 Move disk P forward of 1 tower in modulus 3 (tower 3 → tower 1) else
 - Move disk P back of 1 tower in modulus 3 (tower 1 \rightarrow tower 3)
- i = i+1